lunes, 26 de diciembre de 2011

Simulación BPSK en python/numpy/matplotlib

Una pequeña prueba



import numpy as np
from scipy.special import erfc
#from scipy import weave
#from scipy.weave import converters
import matplotlib.pyplot as plt
from time import time

N = 5000000
ip = np.random.rand(1,N)>0.5;
s = 2*ip-1
t = time()
n = 1.0/np.sqrt(2.0)*(np.random.randn(1,N)+1j*np.random.randn(1,N))
print(time()-t)
Eb_N0_dB = np.arange(-3.0,11.0,1.0) #-3 a 10 dB
errors = []
terrors = []
for EbN0 in Eb_N0_dB:
t = time()
y = s+10**(-EbN0/20.0)*n
ipHat = y.real>0
err = float((ip != ipHat).sum())/N
errors.append(err)
terrors.append(0.5*erfc(np.sqrt(10**(EbN0/10.0))))
print("time = %s, EbN0 = %s, ber = %s"%(time()-t,EbN0,err))
plt.semilogy(Eb_N0_dB,errors,'-o')
plt.semilogy(Eb_N0_dB,terrors,':v')
plt.legend(('simulation','theory'),'upper right',shadow=True,fancybox=True)
plt.title('Bit Error Rate for BPSK')
plt.xlabel(r'$\frac{Eb}{N0}$, dB')
plt.ylabel('Bit Error Rate')
plt.grid(True)
plt.show()



No hay comentarios: